In principle, the Enigma's combination of wired rotors and plugs, which changed each letter into a new one as a user typed a message, made the machine highly secure. German officials believed that no enemy could break the coded messages without capturing a keylist, which told the cipher machine operator what rotor and plug settings to use each day.

Nonetheless, the system had vulnerabilities, and mathematicians played a key role in exploiting those flaws and developing methods for breaking Enigma-enciphered messages. Chris Christensen of Northern Kentucky University has recounted the story of three Polish mathematicians who played a crucial role in that effort. His account, titled "Polish Mathematicians Finding Patterns in Enigma Messages," appeared last year in

*Mathematics Magazine*.

An illuminating visit to Bletchley Park in England, where the bulk of the codebreaking took place during World War II, recently inspired Danish high school teacher and mathematician Erik Vestergaard to create a Web page devoted to the Enigma. The page includes photos, personal notes, and links to a variety of resources on the topic, including a copy of Christensen's article.

The gradual unveiling in recent decades of the importance of the Bletchley codebreaking effort has also provided the background for a number of fictional accounts. My favorite is the suspenseful novel

*Enigma*by Robert Harris, in which the hero is a mathematician recruited to work at Bletchley Park. The novel later became an entertaining movie directed by Michael Apted. I was less impressed by the Enigma references in Neal Stephenson's sprawling

*Cryptonomicon*.

"It seems rare that mathematicians are heroes of stories, and it seems even rarer that they are heroes because they are mathematicians," Christensen noted in his article.

"The story of the Polish mathematicians' success against Enigma is well known to cryptologists," he continued. One of the mathematicians, Marian A. Rejewski, "was able to use elementary theorems about permutations to determine the wiring of the Enigma rotors and to determine the Enigma settings."

For a mathematics teacher, the entire episode provides a dramatic real-world example of mathematical theory at work.